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ABSTRACT

Forming teams of experts who collectively hold a set of required
skills and can successfully cooperate is challenging due to the vast
pool of feasible candidates with diverse backgrounds, skills, and per-
sonalities. Neural models have been proposed to address scalability
while maintaining efficacy by learning the distributions of experts
and skills from successful teams in the past in order to recommend
future teams. However, such models are prone to overfitting when
training data suffers from a long-tailed distribution, i.e., few experts
have most of the successful collaborations, and the majority has
participated sparingly. In this paper, we present an optimization
objective that leverages both successful and virtually unsuccessful

teams to overcome the long-tailed distribution problem.We propose
three negative sampling heuristics that can be seamlessly employed
during the training of neural models. We study the synergistic
effects of negative samples on the performance of neural models
compared to lack thereof on two large-scale benchmark datasets
of computer science publications and movies, respectively. Our
experiments show that neural models that take unsuccessful teams
(negative samples) into account are more efficient and effective in
training and inference, respectively.

CCS CONCEPTS

• Information systems → Social recommendation; Recom-
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1 INTRODUCTION

Collaborative teams are the primary vehicle for coordinating ex-
perts with diverse skills for a particular project, and team formation
has firsthand effects on creating an organizational performance
[3, 5, 6, 11, 17, 21]. Examples include forming a research group on
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‘machine learning’ whose success can be measured by scientific
publications, or a movie’s cast and crew for the next blockbuster
‘sci-fi’ movie with a touch of ‘drama’. Forming a successful team
whose members can effectively collaborate and deliver the out-
comes within the specified constraints, such as planned budget and
timeline, is challenging due to the immense number of candidates
with various backgrounds, skills, and personality traits, as well as
unknown synergistic balance among them; not all teams with best
experts are necessarily successful [18].

Researchers have proposed neural machine learning models
that learn relationships among experts and their social attributes
through neural architectures. They consider all past successful team
compositions as training samples to predict optimum teams for a
given set of required skills in order to bring efficiency while main-
taining efficacy due to the inherently iterative and online learning
procedure in neural architectures. Among the first, Sapienza et
al. [16] proposed a neural autoencoder to form an optimum team.
Autoencoders are, however, prone to overfitting and are not able
to capture the uncertainty in sparse data [4]. Rad et al. [14] have
shown that training datasets in team formation suffer from the
long-tailed distribution; that is, few experts have most of the suc-
cessful collaborations for a small set of skills while the majority has
participated sparingly. As a result, popular experts receive higher
scores for the given skills and are more frequently recommended,
leading to popularity bias. Rad et al. [14], hence, employed a varia-
tional Bayesian neural model to overcome the performance drain
of the long tail problem through uncertainty on weights of the
neural model. Existing neural models are, however, trained solely
on successful teams and overlook unsuccessful ones.

In this paper, we propose an optimization objective that lever-
ages both successful and unsuccessful teams via various negative
sampling heuristics and investigate the synergistic effect of uti-
lizing unsuccessful teams during training of the state-of-the-art
variational Bayesian neural model [14] as well as non-Bayesian neu-
ral models. Literature has shown that leveraging not only positive
samples (e.g., friendship in social networks) but also negative sam-
ples (e.g., distrust) convey complementary signals to neural models
and improve accuracy in various tasks [8, 10, 12, 13, 15, 19, 22].
Most real-world training datasets in the team formation domain,
however, do not have explicit unsuccessful teams (e.g., collections
of rejected papers), or what constitutes a failure remains contro-
versial (e.g., movie’s box office vs. critical reviews). In the absence
of unsuccessful teams and based on the closed-world assumption,
we presume a subset of experts as an unsuccessful team if they
have not already collaborated for the required skills. To this end,
we develop three negative sampling heuristics: 1) uniform: where
subsets of experts are randomly chosen with the same probabil-
ity as samples of unsuccessful teams, 2) unigram: where subsets
of experts are chosen based on their frequencies in the training
set, and 3) smoothed unigram in training minibatches: where we
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employed Laplace smoothing to calculate the unigram probability
of subsets of experts in each training minibatch. In unigram and
smoothed unigram heuristics, experts that have collaborated more
often on skills different from the given input skills will be chosen
more frequently to mitigate popularity bias. We utilize negative
samples during training to incite the neural models to learn vector
representations (embeddings) for experts and skills in the same
vector space such that vectors of experts who have already collab-
orated for the required skills (have been in the same teams) end
up closer to each other whereas vectors of experts who have not
collaborated yet (virtually unsuccessful teams) become distant. We
reproduce the proposed Bayesian and non-Bayesian neural models
under the negative sampling heuristics, and lack thereof, on two
large-scale datasets from different domains with distinct statistical
distributions of skills in teams: i) computer science papers (dblp)
and ii) movies (imdb). The empirical results show that incorporat-
ing negative samples consistently exhibits a stronger predictive
power for the optimum team in Bayesian neural models. However,
non-Bayesian neural models are sensitive to the distribution of
teams over skills and negative samples may have adverse impacts
on effectiveness, as seen in the movies dataset (imdb).

2 NEURAL TEAM FORMATION

We aim to find an optimal team of experts who collectively hold a
set of required skills and can work together to yield success. Given
a set of 𝑚 skills S = {𝑖}𝑚1 and a set of 𝑛 experts E = { 𝑗}𝑛1 , 𝑡𝑠𝑒
is a team of experts 𝑒 ⊆ E; 𝑒 ≠ ∅, that collectively hold a subset
of skills 𝑠 ⊆ S; 𝑠 ≠ ∅, and T = {(𝑡𝑠𝑒 , 𝑦);𝑦 ∈ {0, 1}} indexes all
previous successful and unsuccessful teams. Given a subset of skills
𝑠 and all the previous collaborations T , we aim at identifying an
optimal subset of experts 𝑒 such that their collaboration in the
predicted team (𝑠, 𝑒) will be successful, that is (𝑡𝑠𝑒 , 𝑦 = 1), and
avoiding subset of experts 𝑒 ′ that (𝑡𝑠𝑒′, 𝑦 = 0). More concretely, we
aim to estimate a mapping function 𝑓 of parameters 𝜃 from a subset
of skills and experts to a boolean set; 𝑓𝜃 : 𝑃 (S) × 𝑃 (E) → {0, 1}.
Given all previous collaborations T , we maximize the average log
probability of teams’ success or failure:

1

|T |

∑︁

(𝑡𝑠𝑒 ,𝑦) ∈T

log P(𝑦 |𝑡𝑠𝑒 ) (1)

where 𝑡𝑠𝑒 is a team of experts 𝑒 who collectively hold the set of skills
𝑠 and can either work successfully together or fail otherwise. We
propose to learn vector representations (embeddings) for experts
and skills in the same vector space with the expectation that vec-
tors of experts whose teams have been successful for the required
skills will end up closer to each other in the vector space while
vectors of experts whose teams for the required skills have been
unsuccessful will end up farther from each other. We estimate the
P(𝑦 |𝑡𝑠𝑒 ) through pairwise cosine similarities of vector represen-
tations for the skills ∀𝑖 ∈ 𝑠 and experts ∀𝑗 ∈ 𝑒 . Specifically, for a
successful team (𝑡𝑠𝑒 , 𝑦 = 1), we estimate P(𝑦 = 1|𝑡𝑠𝑒 ) by learning
𝑣𝑠 =

∑
𝑖∈𝑠 𝑣𝑖 and 𝑣𝑒 =

∑
𝑗 ∈𝑒 𝑣 𝑗 that are close in the vector space

and have high cosine similarity while for an unsuccessful team
(𝑡𝑠𝑒 , 𝑦 = 0), we estimate P(𝑦 = 0|𝑡𝑠𝑒 ) by learning 𝑣𝑠 and 𝑣𝑒 that
are far from each other and have low cosine similarity. Formally,
P(𝑦 |𝑡𝑠𝑒 ) can be formulated using the sigmoid function 𝜎 :

𝑃 (𝑦 |𝑡𝑠𝑒 ) = 𝜎 (𝑣⊤𝑒 · 𝑣𝑠 ) (2)

where 𝑣𝑠 and 𝑣𝑒 are the vector representations of the skill and expert
subsets, respectively.

3 NEGATIVE SAMPLING HEURISTICS

Most available data in team formation only consists of successful
teams. The dblp dataset of published research papers in computer
science does not have unsuccessful submissions. In the imdb dataset
of movies, it remains controversial what constitutes a failure for a
movie; its reception by the people (box office) or critical reviews.
In the absence of unsuccessful training instances, we follow the
closed-world assumption that no currently known successful team
for the required skills is considered unsuccessful. We assume that
groups of experts 𝑒 who have little or no collaborative experience
for the required set of skills, i.e., few or no 𝑡𝑠𝑒 , have a low chance
for a successful collaboration. Inspired by [8, 10, 12, 13, 19], we
propose an optimization function that discriminates successful from
unsuccessful teams through negative sampling from a distribution
over the subsets of experts:

∑︁

𝑡𝑠𝑒 ∈T

[log𝜎 (𝑣⊤𝑒 · 𝑣𝑠 ) +

𝑘∑︁

𝑡
𝑠𝑒

′∼P:𝑡
𝑠𝑒

′∉T

log𝜎 (−𝑣⊤𝑒′ · 𝑣𝑠 )] (3)

where P is the probability distribution from which we draw 𝑘 sub-
sets of experts 𝑒 ′ as negative samples for a given subset of skills
𝑠 where 𝑡𝑠𝑒 ∈ T but 𝑡𝑠𝑒′ ∉ T . We present three different negative
sampling distributions, two static negative sampling distributions
[12] and an adaptive noise distribution [2, 7, 13], and study their
effects on neural models:
(1) uniform distribution, where each subset of experts 𝑒 ′ is cho-

sen with the same probability from the uniform distribution
over all subsets of experts P(E) , i.e. P(𝑒 ′) = 1

|P (E) |

(2) unigram distribution, where each subset of experts 𝑒 ′ is
chosen regarding their frequency in all previous teams, i.e.

P(𝑒 ′) = |𝑡
𝑠
′
𝑒
′ |

|T |
and 𝑡𝑠′𝑒′ is a team with skill subset 𝑠 ′ ≠ 𝑠 . Intu-

itively, subsets of experts that have been in previous teams for
other subsets of skills will be given a higher probability and
chosen more frequently as negative samples to dampen the
effect of popularity bias.

(3) smoothed unigram distribution in training minibatch,
where we employed the add-1 or Laplace smoothing when
computing the unigram distribution of the experts in each

training minibatch, i.e. P(𝑒 ′) = 1+|𝑡
𝑠
′
𝑒
′ |

|𝑏 |+ |E |
, where 𝑏 is a minibatch

subset of T , and 𝑡𝑠′𝑒′ is a successful team including expert
𝑒 ′ in each training minibatch. Minibatch stochastic gradient
descent is the de facto method for neural models where the
data is split into batches of data, each of which is sent to the
model for partial calculation in order to speed up training while
maintaining high accuracy. Since only a few teams of experts
exist in each minibatch, we employ the Laplace smoothing so
that no subsets of experts have zero probability.

4 EXPERIMENTS

In this section, we lay out the details of our experiments and findings
toward answering the following research questions1:

1https://github.com/fani-lab/OpeNTF/tree/cikm22
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     (a)      (b)

Figure 1: Distribution of teams over skills and members.
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Figure 2: Training time vs. inference accuracy on dblp.v12.

RQ1: Does negative sampling improve the effectiveness of neural
models for the task of team formation?
RQ2: Are the impacts of negative sampling heuristics robust across
different training datasets with diverse statistical characteristics?
RQ3: How does negative sampling help efficiency of neural models
during training while improving inference effectiveness?

4.1 Setup

4.1.1 Dataset. Our testbed includes two datasets, namely, imdb[1]
and dblp.v12[20]. In dblp.v12, each instance is a publication in
computer science consisting of authors and fields of study (fos).
We map each publication to a team whose authors are the experts
and fields of study are the set of skills. In imdb, each instance is a
movie consisting of its cast and crew such as actors and director,
as well as the movie’s genres. We consider each movie as a team
whose members are the cast and crew, and the movie’s genres are
the skills. In both datasets, we can observe long tails in the distribu-
tions of teams over experts. As shown in Figure 1a,c, many experts
(researchers in dblp, and cast and crew in imdb) have participated
in very few teams (papers in dblp and movies in imdb). However,
imdb and dblp are following different distributions with respect
to the set of skills. While dblp suffers further from the long-tailed
distribution of skills in teams (Figure 1b), imdb follows a more fair
distribution (Figure 1d). Specifically, imdb has a limited variety of
skills (genres) which are, by and large, employed by many movies.

4.1.2 Baselines. Our testbed includes two neural architectures: i)
feed-forward non-Bayesian (non-variational) neural network (fnn)
with eq. 3 as the optimization function, and ii) Bayesian (variational)
neural network [14] (bnn) with Kullback-Leibler optimization. Both
models include a single hidden layer of size d=100, leaky relu
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Figure 3: Training time vs. inference accuracy on imdb.

and sigmoid are the activation functions for the hidden and the
output layers, respectively, and Adam is the optimizer. The input
and output layers are sparse occurrence vector representations (one-
hot encoded) of skills and experts of size |S| and |E |, respectively.
Moreover, we also used pre-trained dense vector representations for
the input skill subsets (-emb). Adapted from paragraph vectors of Le
andMikolov [9], we consider each team as a document and the skills
as the document’s words. We evaluate baselines with and without
our proposed negative sampling heuristics (-uniform, -unigram,
-unigram-b). To have a minimum level of comparison, we also add
a model that randomly assigns experts to a team (random). In total,
we compare 16 + 1 baselines.

4.1.3 Evaluation Strategy and Metrics. To demonstrate prediction
effectiveness, we randomly select 15% of teams for the test set and
perform 5-fold cross-validation on the remaining teams for model
training and validation that results in one trained model per each
fold. Given a team 𝑡𝑠𝑒 from the test set, we compare the ranked list
of experts 𝑒 ′, predicted by the model of each fold, with the observed
subset of experts 𝑒 and report the average performance of models
on all folds in terms of normalized discounted cumulative gain
(ndcg), and mean average precision (map) at top-{2,5,10} as well as
precision (pr), recall (rec), and area under the receiver operating
characteristic (rocauc). To evaluate training efficiency vs. inference
efficacy, we train the baselines on an increasing number of epochs
and evaluate them on the test set at each epoch.

4.2 Results

In response to RQ1, i.e., whether negative sampling improves the
effectiveness of neural models, from Table 1 and 2, we can observe
that (1) all negative sampling heuristics improve Bayesian neural
baselines on dblp and imdb in terms of all metrics. In comparison,
Bayesian baselines with no negative sampling (bnn and bnn-emb)
are the weakest. Specifically, smoothed unigram negative sampling
in minibatches (bnn-unigram-b and bnn-emb-unigram-b) consis-
tently outperforms all other neural baselines in terms of ndcg for
top-{2,5,10} and rocauc. Further, Bayesian baselines with dense
vector representations of skills outperform Bayesian baselines with
sparse vectors which is in line with Rad et al’s experiments.

Contrary to Bayesian baselines, non-Bayesian baselines (fnn-*)
do not show a consistent trend across datasets which bring us
to our second research question RQ2, i.e., whether the impact
of negative sampling heuristics is consistent across training data
from diverse statistical distributions. From Table 1, we can see that
negative sampling heuristics improve non-Bayesian baselines in
dblp in terms of all metrics. However, in imdb, we cannot observe a
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Table 1: Average performance of 5-fold neural models on test set in dblp.v12.
%map2 %map5 %map10 %ndcg2 %ndcg5 %ndcg10 %pr2 %pr5 %pr10 %rec2 %rec5 %rec10 rocauc

random 0.0001 0.0001 0.0002 0.0002 0.0002 0.0004 0.0001 0.0002 0.0002 0.0001 0.0003 0.0006 0.4992

fnn 0.0045 0.0307 0.0612 0.0082 0.0227 0.0369 0.0045 0.0113 0.0155 0.0067 0.0188 0.0188 0.5000
fnn-uniform 0.0487 0.0741 0.0943 0.1074 0.1350 0.1993 0.1020 0.1030 0.0986 0.0597 0.1522 0.2913 0.6512
fnn-unigram 0.0437 0.0677 0.0880 0.0952 0.1249 0.1907 0.0932 0.0985 0.0971 0.0552 0.1447 0.2854 0.6505
fnn-unigram-b 0.0436 0.0665 0.0847 0.1005 0.1249 0.1846 0.0993 0.0979 0.0932 0.0569 0.1429 0.2702 0.6500
fnn-emb 0.0084 0.0402 0.0688 0.0134 0.0302 0.0428 0.0073 0.0174 0.0209 0.0134 0.0255 0.0215 0.4999
fnn-emb-uniform 0.0668 0.1043 0.1305 0.1537 0.1901 0.2716 0.1543 0.1505 0.1346 0.0870 0.2179 0.3925 0.6313
fnn-emb-unigram 0.0700 0.1084 0.1356 0.1564 0.1942 0.2803 0.1523 0.1500 0.1378 0.0884 0.2194 0.4038 0.6331
fnn-emb-unigram-b 0.0656 0.1015 0.1277 0.1444 0.1782 0.2607 0.1415 0.1374 0.1291 0.0830 0.2011 0.3770 0.6322

bnn 0.0061 0.0254 0.0569 0.0123 0.0204 0.0365 0.0061 0.0107 0.0155 0.0101 0.0161 0.0195 0.5000
bnn-uniform 0.0487 0.0741 0.0943 0.1074 0.1350 0.1993 0.4005 0.3555 0.3102 0.2297 0.5124 0.8974 0.7150
bnn-unigram 0.0437 0.0677 0.0880 0.0952 0.1249 0.1907 0.3388 0.2885 0.2670 0.1944 0.4175 0.7737 0.7132
bnn-unigram-b 0.1757 0.2499 0.3039 0.3983 0.4505 0.6312 0.3904 0.3402 0.3017 0.2256 0.4929 0.8774 0.7168

bnn-emb 0.0112 0.0326 0.0634 0.0175 0.0267 0.0413 0.0089 0.0145 0.0186 0.0168 0.0201 0.0201 0.5000
bnn-emb-uniform 0.1620 0.2296 0.2817 0.3663 0.4176 0.5895 0.3656 0.3405 0.2909 0.2121 0.4934 0.8463 0.7123
bnn-emb-unigram 0.1792 0.2569 0.3060 0.4022 0.4623 0.6205 0.3783 0.3298 0.2858 0.2213 0.4802 0.8313 0.7077
bnn-emb-unigram-b 0.1752 0.2537 0.3094 0.4069 0.4728 0.6515 0.3938 0.3518 0.3033 0.2252 0.5065 0.8775 0.7090

Table 2: Average performance of 5-fold neural models on test set in imdb.
%map2 %map5 %map10 %ndcg2 %ndcg5 %ndcg10 %pr2 %pr5 %pr10 %rec2 %rec5 %rec10 rocauc

random 0.0006 0.0009 0.0012 0.0017 0.0018 0.0031 0.0017 0.0015 0.0018 0.0008 0.0018 0.0045 0.4988

fnn 0.3639 0.5009 0.5663 1.0322 0.9760 1.1331 1.0252 0.7927 0.5556 0.4681 0.9187 1.2931 0.5061
fnn-uniform 0.2038 0.3272 0.4191 0.5802 0.6470 0.9116 0.5760 0.5664 0.5219 0.2634 0.6593 1.2292 0.5930
fnn-unigram 0.1977 0.3085 0.4003 0.5522 0.6035 0.8773 0.5386 0.5190 0.5078 0.2492 0.6054 1.1884 0.5924
fnn-unigram-b 0.2141 0.3329 0.4329 0.5911 0.6448 0.9363 0.5864 0.5598 0.5377 0.2767 0.6551 1.2788 0.5941
fnn-emb 0.2487 0.3784 0.4977 0.7057 0.7898 1.1805 0.7028 0.6970 0.7024 0.3243 0.8082 1.6275 0.5585
fnn-emb-uniform 0.2476 0.3872 0.4961 0.6979 0.7817 1.1083 0.7049 0.6979 0.6467 0.3278 0.8029 1.4972 0.6063
fnn-emb-unigram 0.2433 0.3703 0.4740 0.6758 0.7344 1.0442 0.6654 0.6338 0.6026 0.3110 0.7381 1.3961 0.6075
fnn-emb-unigram-b 0.2678 0.3929 0.4974 0.7559 0.7807 1.1027 0.7507 0.6654 0.6267 0.3443 0.7776 1.4650 0.6064

bnn 0.0490 0.1227 0.2231 0.1301 0.3027 0.5725 0.1560 0.3327 0.4200 0.0842 0.3775 0.9536 0.5000
bnn-uniform 0.3167 0.4441 0.5397 0.8560 0.8735 1.1833 0.8193 0.7261 0.6484 0.3863 0.8431 1.5104 0.6305
bnn-unigram 0.2568 0.3749 0.4550 0.7423 0.7651 1.0246 0.7320 0.6563 0.5673 0.3347 0.7711 1.3280 0.6304
bnn-unigram-b 0.2483 0.3810 0.4670 0.6954 0.7673 1.0580 0.6883 0.6654 0.6001 0.3226 0.7795 1.3931 0.6313
bnn-emb 0.0642 0.1334 0.2024 0.1695 0.3124 0.5180 0.1643 0.3194 0.3531 0.0834 0.3696 0.8102 0.5000
bnn-emb-uniform 0.2855 0.3970 0.4730 0.7739 0.7766 1.0370 0.7424 0.6355 0.5548 0.3544 0.7575 1.3128 0.6262
bnn-emb-unigram 0.2820 0.4243 0.5256 0.7969 0.8727 1.1852 0.7819 0.7569 0.6675 0.3620 0.8767 1.5490 0.6338
bnn-emb-unigram-b 0.3267 0.4692 0.5728 0.9207 0.9272 1.2662 0.8858 0.7802 0.7053 0.3982 0.9002 1.6341 0.6470

consistent synergistic trend by using negative sampling heuristics.
Indeed, non-Bayesian baseline without negative samplings (fnn)
is the strongest baseline in terms of map, ndcg, precision (pr) and
recall (rec) for top-{2,5}. We attribute the inefficiency of negative
sampling heuristics for neural models on imdb to the small size of
skill set (genres) and uniform distribution of teams (movies) over
skills. Almost all the genres are fairly adopted by many movies,
as seen in Figure 1d. The fact that dense vector representations
for skills are not effective for non-Bayesian baselines in imdb is
further cementing this view. Overall, (2)we conclude that the effect
of considering unsuccessful teams via negative sampling in non-
Bayesian neural models depends on the underlying distribution
of teams over skills in the training set (dblp vs. imdb). Moreover,
(3) in our experiments, that Bayesian neural models outperform
non-Bayesian ones, reported earlier by Rad et al. on dblp, could
not be generalized to imdb.

In response to RQ3, i.e., whether negative sampling increases
the efficiency of neural models during training while improving
inference effectiveness, from Figure 2 and 3, we can observe that
(4) Bayesian neural models that benefit from negative samples out-
performs other models in fewer number of training epochs for
sparse and dense vector representation across all datasets in terms
of ndcg10. With respect to the non-Bayesian neural models, we can
observe similar synergistic effects of negative sampling heuristics
on obtaining the best inference effectiveness with a fewer training
epochs over dblp. However, we cannot observer similar trend over

imdb. In fact, (5) non-Bayesian neural models without negative sam-
pling (fnn and fnn-emb) could gradually gain the momentum and
achieve the stellar performance over imdb at epoch 7 and after. This
observation further explains that when teams are well-distributed
over a limited set of skills (e.g., movies over genres), overly usage of
negative samples in many epochs of training decouples the vectors
of experts and skills that should have been stayed close for their
participation in successful teams, and consequently degrades the
inference performance.

5 CONCLUSION AND FUTUREWORK

In this paper, we proposed three negative sampling heuristics to
utilize the synergistic effect of virtually unsuccessful teams during
neural model training. Our experiment, when performed on two
large-scale datasets with distinct distributions of teams over skills
and experts, shows that (1) negative sampling improves the effec-
tiveness of Bayesian neural models for the task of team formation;
(2) depending on the distribution of teams over skills, while improv-
ing the performance of non-Bayesian neural baselines in datasets
with a large variety of skills (e.g., dblp), negative sampling may dis-
count the efficacy of neural models in datasets with limited skill set
(e.g., imdb); and (3) negative sampling helps with efficiency during
training while improving inference effectiveness for Bayesian neu-
ral models. For future work, we aim at reproducing neural models
on other datasets like patents as teams of inventors. We also aim at
identifying real unsuccessful teams, e.g., for publications based on
their sleeping time in arxiv or budget-box office ratio for movies.
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